3.1.71 \(\int \sec ^3(c+d x) \sqrt {b \sec (c+d x)} \, dx\) [71]

3.1.71.1 Optimal result
3.1.71.2 Mathematica [A] (verified)
3.1.71.3 Rubi [A] (verified)
3.1.71.4 Maple [C] (verified)
3.1.71.5 Fricas [C] (verification not implemented)
3.1.71.6 Sympy [F]
3.1.71.7 Maxima [F]
3.1.71.8 Giac [F]
3.1.71.9 Mupad [F(-1)]

3.1.71.1 Optimal result

Integrand size = 21, antiderivative size = 95 \[ \int \sec ^3(c+d x) \sqrt {b \sec (c+d x)} \, dx=-\frac {6 b E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {6 \sqrt {b \sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 (b \sec (c+d x))^{5/2} \sin (c+d x)}{5 b^2 d} \]

output
2/5*(b*sec(d*x+c))^(5/2)*sin(d*x+c)/b^2/d-6/5*b*(cos(1/2*d*x+1/2*c)^2)^(1/ 
2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d/cos(d*x+c)^( 
1/2)/(b*sec(d*x+c))^(1/2)+6/5*sin(d*x+c)*(b*sec(d*x+c))^(1/2)/d
 
3.1.71.2 Mathematica [A] (verified)

Time = 0.28 (sec) , antiderivative size = 69, normalized size of antiderivative = 0.73 \[ \int \sec ^3(c+d x) \sqrt {b \sec (c+d x)} \, dx=\frac {\sec ^2(c+d x) \sqrt {b \sec (c+d x)} \left (-12 \cos ^{\frac {5}{2}}(c+d x) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+7 \sin (c+d x)+3 \sin (3 (c+d x))\right )}{10 d} \]

input
Integrate[Sec[c + d*x]^3*Sqrt[b*Sec[c + d*x]],x]
 
output
(Sec[c + d*x]^2*Sqrt[b*Sec[c + d*x]]*(-12*Cos[c + d*x]^(5/2)*EllipticE[(c 
+ d*x)/2, 2] + 7*Sin[c + d*x] + 3*Sin[3*(c + d*x)]))/(10*d)
 
3.1.71.3 Rubi [A] (verified)

Time = 0.46 (sec) , antiderivative size = 104, normalized size of antiderivative = 1.09, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {2030, 3042, 4255, 3042, 4255, 3042, 4258, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^3(c+d x) \sqrt {b \sec (c+d x)} \, dx\)

\(\Big \downarrow \) 2030

\(\displaystyle \frac {\int (b \sec (c+d x))^{7/2}dx}{b^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \left (b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{7/2}dx}{b^3}\)

\(\Big \downarrow \) 4255

\(\displaystyle \frac {\frac {3}{5} b^2 \int (b \sec (c+d x))^{3/2}dx+\frac {2 b \sin (c+d x) (b \sec (c+d x))^{5/2}}{5 d}}{b^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3}{5} b^2 \int \left (b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}dx+\frac {2 b \sin (c+d x) (b \sec (c+d x))^{5/2}}{5 d}}{b^3}\)

\(\Big \downarrow \) 4255

\(\displaystyle \frac {\frac {3}{5} b^2 \left (\frac {2 b \sin (c+d x) \sqrt {b \sec (c+d x)}}{d}-b^2 \int \frac {1}{\sqrt {b \sec (c+d x)}}dx\right )+\frac {2 b \sin (c+d x) (b \sec (c+d x))^{5/2}}{5 d}}{b^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3}{5} b^2 \left (\frac {2 b \sin (c+d x) \sqrt {b \sec (c+d x)}}{d}-b^2 \int \frac {1}{\sqrt {b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 b \sin (c+d x) (b \sec (c+d x))^{5/2}}{5 d}}{b^3}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {\frac {3}{5} b^2 \left (\frac {2 b \sin (c+d x) \sqrt {b \sec (c+d x)}}{d}-\frac {b^2 \int \sqrt {\cos (c+d x)}dx}{\sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}\right )+\frac {2 b \sin (c+d x) (b \sec (c+d x))^{5/2}}{5 d}}{b^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3}{5} b^2 \left (\frac {2 b \sin (c+d x) \sqrt {b \sec (c+d x)}}{d}-\frac {b^2 \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{\sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}\right )+\frac {2 b \sin (c+d x) (b \sec (c+d x))^{5/2}}{5 d}}{b^3}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {3}{5} b^2 \left (\frac {2 b \sin (c+d x) \sqrt {b \sec (c+d x)}}{d}-\frac {2 b^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}\right )+\frac {2 b \sin (c+d x) (b \sec (c+d x))^{5/2}}{5 d}}{b^3}\)

input
Int[Sec[c + d*x]^3*Sqrt[b*Sec[c + d*x]],x]
 
output
((2*b*(b*Sec[c + d*x])^(5/2)*Sin[c + d*x])/(5*d) + (3*b^2*((-2*b^2*Ellipti 
cE[(c + d*x)/2, 2])/(d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]]) + (2*b*Sqr 
t[b*Sec[c + d*x]]*Sin[c + d*x])/d))/5)/b^3
 

3.1.71.3.1 Defintions of rubi rules used

rule 2030
Int[(Fx_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Simp[1/b^m   Int[(b*v) 
^(m + n)*Fx, x], x] /; FreeQ[{b, n}, x] && IntegerQ[m]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 
3.1.71.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 3.13 (sec) , antiderivative size = 412, normalized size of antiderivative = 4.34

method result size
default \(\frac {2 \sqrt {b \sec \left (d x +c \right )}\, \left (3 i \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )^{2}-3 i \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )^{2}+6 i \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )-6 i \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )+3 i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )-3 i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )+3 \sin \left (d x +c \right )+\tan \left (d x +c \right )+\sec \left (d x +c \right ) \tan \left (d x +c \right )\right )}{5 d \left (\cos \left (d x +c \right )+1\right )}\) \(412\)

input
int(sec(d*x+c)^3*(b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 
output
2/5/d*(b*sec(d*x+c))^(1/2)/(cos(d*x+c)+1)*(3*I*EllipticF(I*(-cot(d*x+c)+cs 
c(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*co 
s(d*x+c)^2-3*I*EllipticE(I*(-cot(d*x+c)+csc(d*x+c)),I)*(1/(cos(d*x+c)+1))^ 
(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)^2+6*I*EllipticF(I*(-cot 
(d*x+c)+csc(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1) 
)^(1/2)*cos(d*x+c)-6*I*EllipticE(I*(-cot(d*x+c)+csc(d*x+c)),I)*(1/(cos(d*x 
+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)+3*I*(1/(cos(d*x 
+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(-cot(d*x+c)+c 
sc(d*x+c)),I)-3*I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/ 
2)*EllipticE(I*(-cot(d*x+c)+csc(d*x+c)),I)+3*sin(d*x+c)+tan(d*x+c)+sec(d*x 
+c)*tan(d*x+c))
 
3.1.71.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.26 \[ \int \sec ^3(c+d x) \sqrt {b \sec (c+d x)} \, dx=\frac {-3 i \, \sqrt {2} \sqrt {b} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 i \, \sqrt {2} \sqrt {b} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (3 \, \cos \left (d x + c\right )^{2} + 1\right )} \sqrt {\frac {b}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{5 \, d \cos \left (d x + c\right )^{2}} \]

input
integrate(sec(d*x+c)^3*(b*sec(d*x+c))^(1/2),x, algorithm="fricas")
 
output
1/5*(-3*I*sqrt(2)*sqrt(b)*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstras 
sPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*I*sqrt(2)*sqrt(b)*cos 
(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) 
 - I*sin(d*x + c))) + 2*(3*cos(d*x + c)^2 + 1)*sqrt(b/cos(d*x + c))*sin(d* 
x + c))/(d*cos(d*x + c)^2)
 
3.1.71.6 Sympy [F]

\[ \int \sec ^3(c+d x) \sqrt {b \sec (c+d x)} \, dx=\int \sqrt {b \sec {\left (c + d x \right )}} \sec ^{3}{\left (c + d x \right )}\, dx \]

input
integrate(sec(d*x+c)**3*(b*sec(d*x+c))**(1/2),x)
 
output
Integral(sqrt(b*sec(c + d*x))*sec(c + d*x)**3, x)
 
3.1.71.7 Maxima [F]

\[ \int \sec ^3(c+d x) \sqrt {b \sec (c+d x)} \, dx=\int { \sqrt {b \sec \left (d x + c\right )} \sec \left (d x + c\right )^{3} \,d x } \]

input
integrate(sec(d*x+c)^3*(b*sec(d*x+c))^(1/2),x, algorithm="maxima")
 
output
integrate(sqrt(b*sec(d*x + c))*sec(d*x + c)^3, x)
 
3.1.71.8 Giac [F]

\[ \int \sec ^3(c+d x) \sqrt {b \sec (c+d x)} \, dx=\int { \sqrt {b \sec \left (d x + c\right )} \sec \left (d x + c\right )^{3} \,d x } \]

input
integrate(sec(d*x+c)^3*(b*sec(d*x+c))^(1/2),x, algorithm="giac")
 
output
integrate(sqrt(b*sec(d*x + c))*sec(d*x + c)^3, x)
 
3.1.71.9 Mupad [F(-1)]

Timed out. \[ \int \sec ^3(c+d x) \sqrt {b \sec (c+d x)} \, dx=\int \frac {\sqrt {\frac {b}{\cos \left (c+d\,x\right )}}}{{\cos \left (c+d\,x\right )}^3} \,d x \]

input
int((b/cos(c + d*x))^(1/2)/cos(c + d*x)^3,x)
 
output
int((b/cos(c + d*x))^(1/2)/cos(c + d*x)^3, x)